Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1601-1610.e2, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640895

RESUMO

Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.


Assuntos
Citidina , RNA , Humanos , RNA Mensageiro/genética , Acetilação , Mutação
2.
Nucleic Acids Res ; 52(8): e42, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38512053

RESUMO

We present txtools, an R package that enables the processing, analysis, and visualization of RNA-seq data at the nucleotide-level resolution, seamlessly integrating alignments to the genome with transcriptomic representation. txtools' main inputs are BAM files and a transcriptome annotation, and the main output is a table, capturing mismatches, deletions, and the number of reads beginning and ending at each nucleotide in the transcriptomic space. txtools further facilitates downstream visualization and analyses. We showcase, using examples from the epitranscriptomic field, how a few calls to txtools functions can yield insightful and ready-to-publish results. txtools is of broad utility also in the context of structural mapping and RNA:protein interaction mapping. By providing a simple and intuitive framework, we believe that txtools will be a useful and convenient tool and pave the path for future discovery. txtools is available for installation from its GitHub repository at https://github.com/AngelCampos/txtools.


Assuntos
RNA , Software , RNA/química , RNA/genética , RNA/metabolismo , Humanos , Transcriptoma , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , Conformação de Ácido Nucleico , Mapeamento de Interação de Proteínas/métodos
3.
Trends Genet ; 40(4): 313-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350740

RESUMO

Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , RNA/metabolismo
4.
Genome Biol ; 25(1): 48, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360609

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most abundant mRNA modification, and controls mRNA stability. m6A distribution varies considerably between and within species. Yet, it is unclear to what extent this variability is driven by changes in genetic sequences ('cis') or cellular environments ('trans') and via which mechanisms. RESULTS: Here we dissect the determinants governing RNA methylation via interspecies and intraspecies hybrids in yeast and mammalian systems, coupled with massively parallel reporter assays and m6A-QTL reanalysis. We find that m6A evolution and variability is driven primarily in 'cis', via two mechanisms: (1) variations altering m6A consensus motifs, and (2) variation impacting mRNA secondary structure. We establish that mutations impacting RNA structure - even when distant from an m6A consensus motif - causally dictate methylation propensity. Finally, we demonstrate that allele-specific differences in m6A levels lead to allele-specific changes in gene expression. CONCLUSIONS: Our findings define the determinants governing m6A evolution and diversity and characterize the consequences thereof on gene expression regulation.


Assuntos
Adenina/análogos & derivados , Regulação da Expressão Gênica , RNA , Animais , RNA/genética , Metilação , RNA Mensageiro/metabolismo , Mamíferos/genética
5.
Nat Commun ; 14(1): 8212, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081817

RESUMO

Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.


Assuntos
Adenosina Desaminase , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular , Transcriptoma
6.
Nat Commun ; 14(1): 7462, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985661

RESUMO

Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Parasitos/genética , Trypanosoma brucei brucei/metabolismo , Pseudouridina/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Mamíferos/genética
7.
BMC Biol ; 21(1): 246, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936138

RESUMO

BACKGROUND: The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS: In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS: This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.


Assuntos
Proteínas de Ligação a RNA , Ribonucleoproteínas , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Drosophila/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Éxons , Sítios de Ligação
8.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490041

RESUMO

N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.


Assuntos
Leveduras , Expressão Gênica , Leveduras/genética , Metilação , RNA Mensageiro , Meiose
9.
Mol Cell ; 83(2): 237-251.e7, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36599352

RESUMO

N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.


Assuntos
Splicing de RNA , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Éxons/genética
10.
RNA ; 28(12): 1582-1596, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127124

RESUMO

N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.


Assuntos
Citidina , RNA Guia de Cinetoplastídeos , Humanos , Acetilação , RNA Guia de Cinetoplastídeos/metabolismo , Citidina/genética , Citidina/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Nucleotídeos/metabolismo
11.
EMBO J ; 41(21): e109895, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35971838

RESUMO

Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.


Assuntos
Planárias , Animais , Planárias/fisiologia , Diferenciação Celular/genética , Células-Tronco/metabolismo , Homeostase/genética , Cromatina/metabolismo
12.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648437

RESUMO

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Assuntos
Eucariotos , RNA Ribossômico 18S , RNA Nucleolar Pequeno , Acetilação , Animais , Eucariotos/genética , Eucariotos/metabolismo , Humanos , RNA Ribossômico , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores/metabolismo
13.
Nucleic Acids Res ; 50(9): 4900-4916, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35536311

RESUMO

RNA can be extensively modified post-transcriptionally with >170 covalent modifications, expanding its functional and structural repertoire. Pseudouridine (Ψ), the most abundant modified nucleoside in rRNA and tRNA, has recently been found within mRNA molecules. It remains unclear whether pseudouridylation of mRNA can be snoRNA-guided, bearing important implications for understanding the physiological target spectrum of snoRNAs and for their potential therapeutic exploitation in genetic diseases. Here, using a massively parallel reporter based strategy we simultaneously interrogate Ψ levels across hundreds of synthetic constructs with predesigned complementarity against endogenous snoRNAs. Our results demonstrate that snoRNA-mediated pseudouridylation can occur on mRNA targets. However, this is typically achieved at relatively low efficiencies, and is constrained by mRNA localization, snoRNA expression levels and the length of the snoRNA:mRNA complementarity stretches. We exploited these insights for the design of snoRNAs targeting pseudouridylation at premature termination codons, which was previously shown to suppress translational termination. However, in this and follow-up experiments in human cells we observe no evidence for significant levels of readthrough of pseudouridylated stop codons. Our study enhances our understanding of the scope, 'design rules', constraints and consequences of snoRNA-mediated pseudouridylation.


Assuntos
Pseudouridina , Processamento Pós-Transcricional do RNA , RNA Mensageiro , RNA Nucleolar Pequeno , Humanos , Biossíntese de Proteínas , Pseudouridina/genética , Pseudouridina/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo
14.
STAR Protoc ; 3(1): 101103, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35462793

RESUMO

Oligo library pools are powerful tools for systematic investigation of genetic and transcriptomic machinery such as promoter function and gene regulation, non-coding RNAs, or RNA modifications. Here, we provide a detailed protocol for cloning DNA oligo pools made up of tens of thousands of different constructs, aiming to preserve the complexity of the pools. This system would be suitable for expression in cell lines and can be followed up by next-generation sequencing analysis. For complete details on the use and execution of this profile, please refer to Uzonyi et al. (2021).


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem Celular , Clonagem Molecular , DNA/genética , Biblioteca Gênica
15.
Nat Commun ; 13(1): 929, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177605

RESUMO

Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2'-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Metilação , Metiltransferases/genética , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo
16.
J Leukoc Biol ; 112(2): 257-271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34826345

RESUMO

Macrophages use an array of innate immune sensors to detect intracellular pathogens and to tailor effective antimicrobial responses. In addition, extrinsic activation with the cytokine IFN-γ is often required as well to tip the scales of the host-pathogen balance toward pathogen restriction. However, little is known about how host-pathogen sensing impacts the antimicrobial IFN-γ-activated state. It was observed that in the absence of IRF3, a key downstream component of pathogen sensing pathways, IFN-γ-primed macrophages more efficiently restricted the intracellular bacterium Legionella pneumophila and the intracellular protozoan parasite Trypanosoma cruzi. This effect did not require IFNAR, the receptor for Type I IFNs known to be induced by IRF3, nor the sensing adaptors MyD88/TRIF, MAVS, or STING. This effect also did not involve differential activation of STAT1, the major signaling protein downstream of both Type 1 and Type 2 IFN receptors. IRF3-deficient macrophages displayed a significantly altered IFN-γ-induced gene expression program, with up-regulation of microbial restriction factors such as Nos2. Finally, we found that IFN-γ-primed but not unprimed macrophages largely excluded the activated form of IRF3 from the nucleus following bacterial infection. These data are consistent with a relationship of mutual inhibition between IRF3 and IFN-γ-activated programs, possibly as a component of a partially reversible mechanism for modulating the activity of potent innate immune effectors (such as Nos2) in the context of intracellular infection.


Assuntos
Fator Regulador 3 de Interferon , Interferon gama , Legionella pneumophila , Macrófagos , Trypanosoma cruzi , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon gama/metabolismo , Legionella pneumophila/patogenicidade , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Trypanosoma cruzi/patogenicidade
17.
Nat Struct Mol Biol ; 28(12): 1038-1049, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887567

RESUMO

Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae. Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation.


Assuntos
Meiose/genética , Estabilidade de RNA/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Adenosina/química , Exorribonucleases/metabolismo , Expressão Gênica/genética , Poli A/química , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480159

RESUMO

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Assuntos
Adenosina/análogos & derivados , Estabilidade de RNA/genética , Análise de Sequência de RNA/métodos , Adenosina/análise , Adenosina/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Expressão Gênica , Meia-Vida , Meiose , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/fisiologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Leveduras/genética
19.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34402854

RESUMO

Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.


Assuntos
Centro Germinativo/fisiologia , Metiltransferases/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animais , Linfócitos B/patologia , Ciclo Celular/genética , Regulação da Expressão Gênica , Genes myc , Centro Germinativo/patologia , Metilação , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Smegmamorpha , Baço/patologia
20.
RNA ; 27(11): 1293-1301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312287

RESUMO

A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.


Assuntos
Epigênese Genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribossomos/fisiologia , Transcriptoma , Metilação , RNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA